You are here

Agent Behavior Publications

Abdela, W., Graham, M., Tsegaye, H., Temesgen, S., & Yehualaeshet, T. (2011). Effects of orange juice pH on survival, urease activity and DNA profiles of Yersinia enterocolitica and Yersinia pseudotuberculosis stored at 4 degree C. Journal of food safety, 31(4), 487–496. doi:10.1111/j.1745-4565.2011.00325.x

Agarwal, A. K., Dong, L., Beebe, D. J., & Jiang, H. (2007). Autonomously-triggered microfluidic cooling using thermo-responsive hydrogels. Lab on a chip, 7(3), 310–5. doi:10.1039/b617767k

Agoston, R., Soni, K. a, McElhany, K., Cepeda, M. L., Zuckerman, U., Tzipori, S., Mohácsi-Farkas, C., et al. (2009). Rapid concentration of Bacillus and Clostridium spores from large volumes of milk, using continuous flow centrifugation. Journal of food protection, 72(3), 666–8. Retrieved from

Alocilja, E. C. (2008). Biosensors for Detecting Pathogenic Bacteria in the Meat Industry. Meat Biotechnology (pp. 335–359). Springer.

Alocilja, E. C. (2009). Market opportunities: biosensor technologies in the food industry.

Alocilja, E. C., & Chakrabartty, S. (2009). Design and characterization of a silver-enhanced gold nanoparticle-based biochip. 2009 IEEE International Symposium on Circuits and Systems (pp. 2433–2436). IEEE. doi:10.1109/ISCAS.2009.5118292

Alocilja, E. C., & Muhammad-tahir, Z. (2008). Label-Free Microbial Biosensors Using Molecular Nanowire Transducers. Principles of Bacterial Detection (pp. 377–413).

Anderson, M. J., Torres-Chavolla, E., Castro, B. a., & Alocilja, E. C. (2010). One step alkaline synthesis of biocompatible gold nanoparticles using dextrin as capping agent. Journal of Nanoparticle Research, 13(7), 2843–2851. doi:10.1007/s11051-010-0172-3

Anderson, M. J., Zhang, D., & Alocilja, E. C. (2011). Spectral and Electrical Nanoparticle-Based Molecular Detection of Bacillus Anthracis Using Copolymer Mass Amplification. IEEE Transactions on Nanotechnology, 10(1), 44–49. doi:10.1109/TNANO.2010.2061235

Berry, S. M., Strotman, L. N., Kueck, J. D., Alarid, E. T., & Beebe, D. J. (2011). Purification of cell subpopulations via immiscible filtration assisted by surface tension (IFAST). Biomedical microdevices, 13(6), 1033–42. doi:10.1007/s10544-011-9573-z

Black, D. G., Taylor, T. M., Kerr, H. J., Padhi, S., Montville, T. J., & Davidson, P. M. (2008). Decontamination of fluid milk containing Bacillus spores using commercial household products. Journal of food protection, 71(3), 473–8. Retrieved from

Bobeck, E., & Cook, M. (2005). Heat Stability of Gallus domesticus Immunoglobulin Y ( IgY ). Wisconsin Undergraduate Journal of Science, 1(1), 25–28.

Bullerman, L. B., Bianchini, A., Hanna, M. a, Jackson, L. S., Jablonski, J., & Ryu, D. (2008). Reduction of fumonisin B1 in corn grits by single-screw extrusion. Journal of agricultural and food chemistry, 56(7), 2400–5. doi:10.1021/jf0729513

Cameron, S. M., Durchschein, K., Richman, J. E., Sadowsky, M. J., & Wackett, L. P. (2011). A New Family of Biuret Hydrolases Involved in S-Triazine Ring Metabolism. ACS catalysis, 2011(1), 1075–1082. doi:10.1021/cs200295n

Cho, S., Shi, K., Wackett L., Aihara. H. (2013) Crystalization and preliminary X-ray diffraction studies of cyanuric acid hydrolase from Azorhizobium caulinodans. Acta crystallographica Section F 69:880-883.

Cords, B. (2005). Chemical Inactivation of Biological Agents. Proceedings of the Institute of Food Technologists’ First Annual Food Protection and Defense Conference.

Deschaines , T., He, L., Labuza. T. (2012) Use of an Antibody modified SERS for Foreign Protein Detection in Milk.Thermo Fisher

Denes, F. S., Somers, E. B., Manolache, S., & Wong, A. C. L. (2005). Use of Plasma Technology for Decontamination.

Dodge, A., Preiner, C., Wackett. L. (2013) Expanding the cyanuric acid hydrolase protein family to the fungal kingdom. J. Bacteriol. (in press).

Dodge, A., Wackett, L., Sadowsky. M. (2012) Melamine metabolism by Rhodococcus sp. Mel. Appl. Environ. Microbiol. 78:1397-1403.

Dong, L., Agarwal, A. K., Beebe, D. J., & Jiang, H. (2007). Variable-Focus Liquid Microlenses and Microlens Arrays Actuated by Thermoresponsive Hydrogels. Advanced Materials, 19(3), 401–405. doi:10.1002/adma.200601561

Dong, Liang, Agarwal, A. K., Beebe, D. J., & Jiang, H. (2006). Adaptive liquid microlenses activated by stimuli-responsive hydrogels. Nature, 442(7102), 551–4. doi:10.1038/nature05024

Dong, Liang, & Jiang, H. (2006). pH-adaptive microlenses using pinned liquid-liquid interfaces actuated by pH-responsive hydrogel. Applied Physics Letters, 89(21), 211120. doi:10.1063/1.2393038

Dong, Liang, & Jiang, H. (2007a). Autonomous microfluidics with stimuli-responsive hydrogels. Soft Matter, 3(10), 1223. doi:10.1039/b706563a

Dong, Liang, & Jiang, H. (2007b). Tunable and movable liquid microlens in situ fabricated within microfluidic channels.Applied Physics Letters, 91(4), 041109. doi:10.1063/1.2759469

Dong, Liang, & Jiang, H. (2008). Selective Formation and Removal of Liquid Microlenses at Predetermined Locations Within Microfluidics Through Pneumatic Control. Journal of Microelectromechanical Systems, 17(2), 381–392. doi:10.1109/JMEMS.2007.912702

Frisk, M. L., Berthier, E., Tepp, W. H., Johnson, E. a, & Beebe, D. J. (2008). Bead-based microfluidic toxin sensor integrating evaporative signal amplification. Lab on a chip, 8(11), 1793–800. doi:10.1039/b811075a

Frisk, M. L., Lin, G., Johnson, E. a, & Beebe, D. J. (2011). Synaptotagmin II peptide-bead conjugate for botulinum toxin enrichment and detection in microchannels. Biosensors & bioelectronics, 26(5), 1929–35. doi:10.1016/j.bios.2010.06.035

Frisk, M. L., Tepp, W. H., Johnson, E. a, & Beebe, D. J. (2009). Self-assembled peptide monolayers as a toxin sensing mechanism within arrayed microchannels. Analytical chemistry, 81(7), 2760–7. doi:10.1021/ac802707u

Frisk, M. L., Tepp, W. H., Lin, G., Johnson, E. A., & Beebe, D. J. (2007). Substrate-Modified Hydrogels for Autonomous Sensing of Botulinum Neurotoxin Type A. Chemistry of Materials, 19(24), 5842–5844. doi:10.1021/cm7021032

Gore, A., Chakrabartty, S., Pal, S., & Alocilja, E. C. (2006). A Multichannel Femtoampere-Sensitivity Potentiostat Array for Biosensing Applications. IEEE Transactions on Circuits and Systems I: Regular Papers, 53(11), 2357–2363. doi:10.1109/TCSI.2006.884432

Hathurusinghe, M. H., & Ibrahim, S. A. (2012). Survival and Growth of Yogurt Culture in MRS Broth in the Presence of Selected Rodenticides. Milchwissenschaft, 67(1), 51–55.

He, L., Deen, B., Pagel, A., Diez-Gonzalez, F., Labuza. T.  (2013) Concentration, detection and discrimination of Bacillus anthracis spores in orange juice using aptamer based surface enhanced Raman spectroscopy. Analyst. 138, 1657-1659. 

 He, L., Deen, B., Rodda, T., Ronningen, I., Blasius, T., Haynes, C. L., Diez-Gonzalez, F., et al. (2011). Rapid Detection of Ricin in Milk Using Immunomagnetic Separation Combined with Surface-Enhanced Raman Spectroscopy. Journal of Food Science, 76(5), N49–N53. doi:10.1111/j.1750-3841.2011.02196.x

He, L., Haynes, C. L., Diez-Gonzalez, F., & Labuza, T. P. (2011). Rapid detection of a foreign protein in milk using IMS-SERS. Journal of Raman Spectroscopy, 42(6), 1428–1434. doi:10.1002/jrs.2880

He, L., Labuza, T., Deschaines . T. (2012) Detection of Ricin in Milk Using Immunomagnetic Separation (IMS) with Surface-Enhanced Raman Scattering (SERS)

He, L., Labuza, T., Deschaines. T. (2012) Aptamer based Surface-Enhanced Raman Scattering (SERS) for Detection of Ricin in Liquids Thermo Fisher 

He, L., Lamont, E., Veeregowda, B., Sreevatsan, S., Haynes, C. L., Diez-Gonzalez, F., & Labuza, T. P. (2011). Aptamer-based surface-enhanced Raman scattering detection of ricin in liquid foods. Chemical Science, 2(8), 1579. doi:10.1039/c1sc00201e

He, L., Rodda, T., Haynes, C. L., Deschaines, T., Strother, T., Diez-Gonzalez, F., & Labuza, T. P. (2011). Detection of a Foreign Protein in Milk Using Surface-Enhanced Raman Spectroscopy Coupled with Antibody-Modified Silver Dendrites. Analytical chemistry, 1510–1513. doi:10.1021/ac1032353

Hilgren, J., Swanson, K. M. J., Diez-Gonzalez, F., & Cords, B. (2007). Inactivation of Bacillus anthracis spores by liquid biocides in the presence of food residue. Applied and environmental microbiology, 73(20), 6370–7. doi:10.1128/AEM.00974-07

Hong, W., Young, E., Tepp, W., Johnson, E., Beebe. D. “A microscale neuron and Schwann cell coculture model for increasing detection sensitivity of botulinum neurotoxin type A,” Toxicol Sci, 134: 64-72 (2013).

Jablonski, J., & Jackson, L. S. (2008). Stability of picrotoxin during yogurt manufacture and storage. Journal of food science, 73(8), T121–8. doi:10.1111/j.1750-3841.2008.00911.x

Jackson, L. S., & Al-Taher, F. (2008). Factors Affecting Mycotoxin Production in Fruits. In R. Barkai-Golan & N. Paster (Eds.), Mycotoxins in Fruits and Vegetables (pp. 75–104).

Jackson, L. S., Zhang, Z., & Tolleson, W. H. (2010). Thermal stability of ricin in orange and apple juices. Journal of food science, 75(4), T65–71. doi:10.1111/j.1750-3841.2010.01570.x

Kamikawa, T. L., Mikolajczyk, M. G., Kennedy, M., Zhang, P., Wang, W., Scott, D. E., & Alocilja, E. C. (2010). Nanoparticle-based biosensor for the detection of emerging pandemic influenza strains. Biosensors & bioelectronics, 26(4), 1346–52. doi:10.1016/j.bios.2010.07.047

Kamikawa, T. L., Mikolajczyk, M. G., Kennedy, M., Zhong, L., Zhang, P., Setterington, E. B., Scott, D. E., et al. (2011). Pandemic Influenza Detection by Electrically Active Magnetic Nanoparticles and Surface Plasmon Resonance. IEEE Transactions on Nanotechnology, (c). doi:10.1109/TNANO.2011.2157936

Kim, D., & Beebe, D. J. (2007). Hydrogel-based reconfigurable components for microfluidic devices. Lab on a chip, 7(2), 193–8. doi:10.1039/b612995a

Koklu, M., Park, S., Pillai, S. D., & Beskok, A. (2010). Negative dielectrophoretic capture of bacterial spores in food matrices. Biomicrofluidics, 4(3). doi:10.1063/1.3479998

Koklu, M., Sabuncu, A. C., & Beskok, A. (2010). Acoustophoresis in shallow microchannels. Journal of colloid and interface science, 351(2), 407–14. doi:10.1016/j.jcis.2010.08.029

Lamont, E. a, He, L., Warriner, K., Labuza, T. P., & Sreevatsan, S. (2011). A single DNA aptamer functions as a biosensor for ricin. The Analyst, 136(19). doi:10.1039/c1an15352h

Leishman, O. N., Johnson, M. J., Labuza, T. P., & Diez-Gonzalez, F. (2010). Survival of Bacillus anthracis spores in fruit juices and wine. Journal of food protection, 73(9), 1694–7. Retrieved from

Leishman, O. N., Labuza, T. P., & Diez-Gonzalez, F. (2010). Hydrophobic properties and extraction of Bacillus anthracis spores from liquid foods. Food microbiology, 27(5), 661–6. doi:10.1016/

Liu, Y., & Jiang, H. (2010). Droplet-based lateral tunable optofluidic microlens array with pneumatic control. 2010 International Conference on Optical MEMS and Nanophotonics (pp. 131–132). IEEE. doi:10.1109/OMEMS.2010.5672148

Lo, C., & Jiang, H. (2010). Photopatterning and degradation study of dextran-glycidyl methacrylate hydrogels. Polymer Engineering & Science, 50(2), 232–239. doi:10.1002/pen.21531

Lumor, S. E., Diez-Gonzalez, F., & Labuza, T. P. (2011). Detection of warfare agents in liquid foods using the brine shrimp lethality assay. Journal of food science, 76(1), T16–9. doi:10.1111/j.1750-3841.2010.01966.x

Lumor, S., Fredrickson, N., Ronningen, I., Deen, B., Smith, K., Diez-Gonzalez, F., Labuza. T. (2012) Detection and Inactivation of Saxitoxin in Skim Milk Int. Journal of Food Protection  75(6): 1113-1116.

Lumor, S., Fredrickson, N., Ronningen, I., Deen, B., Smith, K., Diez-Gonzalez, F., Labuza. T. (2012) Comparison, in Food Matrices, of the Presence of Shiga Toxin 1 (Stx1) as Determined by an ELISA and a Biological Activity Assay. Intl. J. Food Protection 75(2): 1113-1116 DOI 10.4315/0362-028X.JFP-11-381

Lumor, S. E., Hutt, A., Ronningen, I., Diez-Gonzalez, F., & Labuza, T. P. (2011). Validation of immunodetection (ELISA) of ricin using a biological activity assay. Journal of food science, 76(1), C112–6. doi:10.1111/j.1750-3841.2010.01943.x

Pal, S. (2008). Sensitivity and specificity performance of a direct-charge transfer biosensor for detecting Bacillus cereus in selected food matrices. Biosystems Engineering, 99(4), 461–468. doi:10.1016/j.biosystemseng.2007.11.015

Pal, S., & Alocilja, E. C. (2009). Electrically active polyaniline coated magnetic (EAPM) nanoparticle as novel transducer in biosensor for detection of Bacillus anthracis spores in food samples. Biosensors & bioelectronics, 24(5), 1437–44. doi:10.1016/j.bios.2008.08.020

Pal, S., & Alocilja, E. C. (2010). Electrically active magnetic nanoparticles as novel concentrator and electrochemical redox transducer in Bacillus anthracis DNA detection. Biosensors & bioelectronics, 26(4), 1624–30. doi:10.1016/j.bios.2010.08.035

Pal, S., Alocilja, E. C., & Downes, F. P. (2007). Nanowire labeled direct-charge transfer biosensor for detecting Bacillus species. Biosensors & bioelectronics, 22(9-10), 2329–36. doi:10.1016/j.bios.2007.01.013

Pal, S., Setterington, E. B., & Alocilja, E. C. (2008). Electrically Active Magnetic Nanoparticles for Concentrating and Detecting <emphasis emphasistype=“italic”>Bacillus anthracis </emphasis>Spores in a Direct-Charge Transfer Biosensor. IEEE Sensors Journal, 8(6), 647–654. doi:10.1109/JSEN.2008.922687

Pang, S., Labuza, T., He. L. Development of a single aptamer-based  surface enhanced Raman scattering method for rapid detection of multiple pesticides. Analytical Chemistry (under review).

Park, J., Teren, S., Tepp, W. H., Beebe, D. J., Johnson, E. A., & Abbott, N. L. (2006). Formation of Oligopeptide-Based Polymeric Membranes at Interfaces between Aqueous Phases and Thermotropic Liquid Crystals.Chemistry of Materials, 18(26), 6147–6151. doi:10.1021/cm0606732

Park, J.-S., & Abbott, N. L. (2008). Ordering Transitions in Thermotropic Liquid Crystals Induced by the Interfacial Assembly and Enzymatic Processing of Oligopeptide Amphiphiles. Advanced Materials, 20(6), 1185–1190. doi:10.1002/adma.200702012

Park, J.-S., Jang, C.-H., Tingey, M. L., Lowe, A. M., & Abbott, N. L. (2006). Influence of 4-cyano-4’-biphenylcarboxylic acid on the orientational ordering of cyanobiphenyl liquid crystals at chemically functionalized surfaces. Journal of colloid and interface science, 304(2), 459–73. doi:10.1016/j.jcis.2006.08.063

Park, S., & Beskok, A. (2008). Alternating current electrokinetic motion of colloidal particles on interdigitated microelectrodes. Analytical chemistry, 80(8), 2832–41. doi:10.1021/ac7024859

Park, S., Koklu, M., & Beskok, A. (2009). Particle trapping in high-conductivity media with electrothermally enhanced negative dielectrophoresis. Analytical chemistry, 81(6), 2303–10. doi:10.1021/ac802471g

Saikaly, P. E., Barlaz, M. a, & de Los Reyes, F. L. (2007). Development of quantitative real-time PCR assays for detection and quantification of surrogate biological warfare agents in building debris and leachate. Applied and environmental microbiology, 73(20), 6557–65. doi:10.1128/AEM.00779-07

Schamberger, G. P., & Labuza, T. P. (2006). Evaluation of Front-face Fluorescence for Assessing Thermal Processing of Milk. Journal of Food Science, 71(2), C69–C74. doi:10.1111/j.1365-2621.2006.tb08884.x

Schamberger, G. P., & Labuza, T. P. (2007). Effect of green tea flavonoids on Maillard browning in UHT milk. LWT - Food Science and Technology, 40(8), 1410–1417. doi:10.1016/j.lwt.2006.09.009

Seffernick, J., Erickson, J., Cameron, S., Cho, S., Dodge, A., Richman, J., Sadowsky, M., Wackett. L. (2012) Defining the cyanuric acid hydrolase (AtzD)/barbiturase protein family. J. Bacteriol. 194:4579-4588.

Setterington, E. B., & Alocilja, E. C. (2011). Rapid electrochemical detection of polyaniline-labeled Escherichia coli O157:H7. Biosensors & bioelectronics, 26(5), 2208–14. doi:10.1016/j.bios.2010.09.036

Setterington, E. B., Cloutier, B. C., Ochoa, J. M., Cloutier, A. K., Patel, P. J., & Alocilja, E. C. (2011). Rapid, sensitive, and specific immunomagnetic separation of foodborne pathogens. International Journal of Food Safety, Nutrition and Public Health, 4(1), 83. doi:10.1504/IJFSNPH.2011.042576

Sohni, Y., Kanjilal, S., & Kapur, V. (2008). Performance evaluation of five commercial real-time PCR reagent systems using TaqMan assays for B. anthracis detection. Clinical biochemistry, 41(7-8), 640–4. doi:10.1016/j.clinbiochem.2008.01.007

Sridharamurthy, S. S., & Agarwal, A. K. (2005). A Wireless Chemical and Biological Microsensor Based on Dissolvable Membranes. IEEE Sensors, 2005. (pp. 476–479). IEEE. doi:10.1109/ICSENS.2005.1597739

Sridharamurthy, S. S., Agarwal, A. K., & Beebe, D. J. (2005). A fluidic chemical and biological sensing mechanism with high transduction based on dissolvable membranes. The 13th International Conference on Solid-State Sensors, Actuators and Microsystems, 2005. Digest of Technical Papers. TRANSDUCERS  ’05. (Vol. 2, pp. 1820–1823). IEEE. doi:10.1109/SENSOR.2005.1497448

Sridharamurthy, S. S., Agarwal, A. K., Beebe, D. J., & Jiang, H. (2006). Dissolvable membranes as sensing elements for microfluidics based biological/chemical sensors. Lab on a chip, 6(7), 840–2. doi:10.1039/b607066c

Sridharamurthy, S. S., Cadwell, K. D., Abbott, N. L., & Jiang, H. (2008). A microstructure for the detection of vapor-phase analytes based on orientational transitions of liquid crystals. Smart Materials and Structures, 17(1), 012001. doi:10.1088/0964-1726/17/01/012001

Sridharamurthy, S. S., Dong, L., & Jiang, H. (2007). A microfluidic chemical/biological sensing system based on membrane dissolution and optical absorption. Measurement Science and Technology, 18(1), 201–207. doi:10.1088/0957-0233/18/1/025

Sridharamurthy, S. S., & Jiang, H. (2007). A Microfluidic Device to Acquire Gaseous Samples Via Surface Tension Held Gas-Liquid Interface. IEEE Sensors Journal, 7(9), 1315–1316. doi:10.1109/JSEN.2007.901536

Strotman, L., Lin, G., Berry, S., Johnson, E., Beebe. D. Facile and rapid DNA extraction and purification from food matrices using IFAST (immiscible filtration assisted by surface tension). Analyst. 2012 Sept 7;137(17):4023-8. Epub 2012 July 20.

Takhistov, P. (2005). Biosensor Technology for Food Processing, Safety and Packaging. Handbook of Food Science, Technology, and Engineering.

Takhistov, P., & Bryant, C. M. (2006). Protecting the Food Supply. Food Technology, 34–43.

Torres-Chavolla, E., & Alocilja, E. C. (2009). Aptasensors for detection of microbial and viral pathogens. Biosensors & bioelectronics, 24(11), 3175–82. doi:10.1016/j.bios.2008.11.010

Torres-Chavolla, E., & Alocilja, E. C. (2011). Nanoparticle based DNA biosensor for tuberculosis detection using thermophilic helicase-dependent isothermal amplification. Biosensors & bioelectronics, 26(11), 4614–8. doi:10.1016/j.bios.2011.04.055

Torres-Chavolla, E., Ranasinghe, R. J., & Alocilja, E. C. (2010). Characterization and Functionalization of Biogenic Gold Nanoparticles for Biosensing Enhancement. IEEE Transactions on Nanotechnology, 9(5), 533–538. doi:10.1109/TNANO.2010.2052926

Warriner, K., Lai, E. P. C., Namvar, A., Hawkins, D. M., & Reddy, S. M. (2008). Molecular Imprinted Polymers for Biorecognition of Bioagents. Principles of Bacterial Detection (pp. 785–814).

Wijaya, W., Shintaro, P., Labuza, T., He. L. (2013). Rapid Detection of Acetamiprid in Foods Using Surface-Enhanced Raman Spectroscopy (SERS). J. Food Science (under review)

Woubit, A., Yehualaeshet, T., Habtemariam, T., & Samuel, T. (2012). Novel genomic tools for specific and real-time detection of biothreat and frequently encountered foodborne pathogens. Journal of food protection, 75(4), 660–70. doi:10.4315/0362-028X.JFP-11-480

Wu, X., Lin, G., Li, C., Huang, X., Tepp, W.,  Johnson, E., Jiang. H. “A Microfluidic Sensor of Botulinum Neurotoxin Type A Utilizing SNAP-25 Incorporated Responsive Hydrogel,” Proceedings of IEEE Sensors 2013, Nov. 4-6, Baltimore, MD. In print.

Xu, S., Labuza, T. P., & Diez-Gonzalez, F. (2006). Thermal inactivation of Bacillus anthracis spores in cow’s milk.Applied and environmental microbiology, 72(6), 4479–83. doi:10.1128/AEM.00096-06

Xu, S., Labuza, T. P., & Diez-Gonzalez, F. (2008a). Inactivation kinetics of avirulent Bacillus anthracis spores in milk with a combination of heat and hydrogen peroxide. Journal of food protection, 71(2), 333–8. Retrieved from

Xu, S., Labuza, T. P., & Diez-Gonzalez, F. (2008b). Inactivation of Bacillus anthracis spores by a combination of biocides and heating under high-temperature short-time pasteurization conditions. Applied and environmental microbiology, 74(11), 3336–41. doi:10.1128/AEM.02072-07

Zeng, X., & Jiang, H. (2008). Polydimethylsiloxane Microlens Arrays Fabricated Through Liquid-Phase Photopolymerization and Molding. Journal of Microelectromechanical Systems, 17(5), 1210–1217. doi:10.1109/JMEMS.2008.926139

Zhang, D., Anderson, M. J., Huarng, M. C., & Alocilja, E. C. (2011). Nanoparticle-Based Biobarcoded DNA Sensor for the Rapid Detection of pagA Gene of Bacillus Anthracis. IEEE Transactions on Nanotechnology, 10(6), 1433–1438. doi:10.1109/TNANO.2011.2165965

Zhang, D., Carr, D. J., & Alocilja, E. C. (2009). Fluorescent bio-barcode DNA assay for the detection of Salmonella enterica serovar Enteritidis. Biosensors & bioelectronics, 24(5), 1377–81. doi:10.1016/j.bios.2008.07.081

Zhang, D., Huarng, M. C., & Alocilja, E. C. (2010). A multiplex nanoparticle-based bio-barcoded DNA sensor for the simultaneous detection of multiple pathogens. Biosensors & bioelectronics, 26(4), 1736–42. doi:10.1016/j.bios.2010.08.012

Zheng, J.,  Pang, S., Labuza, T., He. L. (2013) Semi-quantification of Surface-enhanced Raman Scattering using a handheld Raman Spectrometer. Analyst   DOI:

Zuo, Y., Chakrabartty, S., Muhammad-Tahir, Z., Pal, S., & Alocilja, E. C. (2006). Spatio-Temporal Processing for Multichannel Biosensors Using Support Vector Machines. IEEE Sensors Journal, 6(6), 1644–1651. doi:10.1109/JSEN.2006.884445